Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1,4-Diazabicyclo[2.2.2]octane-1,4diium trichromate

Cheng-Rong Ding, ${ }^{a}$ Zhi-Min Jin, ${ }^{\text {b }} *$ Hai-Bin Wang, ${ }^{\text {a }}$ Mao-Lin Hu^{c} and $\mathrm{He} \mathrm{Lin}^{\text {d }}$

${ }^{\text {a College of Chemical Engineering and Materials Science, Zhejiang University of }}$ Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {b }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {c Department of Chemistry, Wenzhou Normal College, Zhejiang }}$ 325003, People's Republic of China, and dDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
Correspondence e-mail: zimichem@sina.com
Received 9 February 2004
Accepted 19 February 2004
Online 21 April 2004
The title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)$ [$\left.\mathrm{Cr}_{3} \mathrm{O}_{10}\right]$, consists of a diaza-bicyclo[2.2.2]octane-1,4-diium cation and a discrete trichromate anion linked by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Three CrO_{4} tetrahedra are joined via shared O atoms to form the trichromate anion. Supramolecular rings, which can be described by the graph-set motif $R_{4}^{4}(26)$, are built via N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions play lesser roles in forming the structure.

Comment

Many structures of chromates and dichromates have been reported, as well as a few cases of trichromates and sporadic cases of tetrachromates and polychromates (Pressprich et al., 1988). It is almost impossible to predict the real form of these chromium compounds prior to experimental investigation. We report here the synthesis and structure determination of the title salt, (I), and compare its structure with that of other trichromates.

(I)

Fig. 1 shows the asymmetric unit of (I), consisting of a di-azabicyclo[2.2.2]octane-1,4-diium (DABCO-diium) cation and a discrete trichromate anion that are linked by an N1$\mathrm{H} 1 \cdots \mathrm{O} 10$ hydrogen bond (Table 2). The trichromate anion is composed of three CrO_{4} tetrahedra, joined via shared O atoms. The $\mathrm{Cr}-\mathrm{O}_{\mathrm{t}}$ (terminal O atom) bond lengths are shorter than the $\mathrm{Cr}-\mathrm{O}_{\mathrm{b}}$ (bridging O atom) bonds, the mean lengths being 1.599 (5) and 1.77 (3) \AA, respectively, with a strong dispersion around these mean values: the $\mathrm{Cr}-\mathrm{O}_{\mathrm{t}}$ distances range from 1.581 (2) to 1.618 (2) \AA, and the $\mathrm{Cr}-\mathrm{O}_{\mathrm{b}}$

Figure 1
The structure of (I), showing 40\% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is indicated by a dashed line.
distances range from 1.702 (2) to 1.837 (2) Å (Table 1). The $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles range from 106.17 (13) to 111.71 (12) ${ }^{\circ}$, and thus deviate from the ideal value $\left(109.5^{\circ}\right)$. The $\mathrm{Cr}-\mathrm{O}$ range of the inner Cr 2 tetrahedron is comparable to those of the terminal tetrahedra. As indicated by the obvious differences between the magnitudes of the $\mathrm{Cr}-\mathrm{O}_{\mathrm{b}}$ and $\mathrm{Cr}-\mathrm{O}_{\mathrm{t}}$ distances, as well the great disparity between the values of the $\mathrm{O}-\mathrm{Cr}-$ O angles, the coordination geometries formed by the four O atoms around the Cr atom are distorted tetrahedra. These results are in good agreement with those reported for $\mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ (Blum, 1979a), $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ (Blum, 1979b; Blum \& Guitel, 1980), $\mathrm{K}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ (Blum et al., 1979), dipyrazinium trichromate (Pressprich et al., 1988), tetramethylammonium trichromate (Fossé et al., 2001) and $\alpha-\mathrm{Cs}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ (Kolitsch, 2003). The title compound exhibits dissimilar $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ angles [127.34 (12) and $132.80(12)^{\circ}$; Table 1] and thus differs from guanidinium trichromates [132.7(11); Stěpień \& Grabowski, 1977], $\alpha-\mathrm{Cs}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ [136.58 (11) and 140.30 (12) ${ }^{\circ}$; Kolitsch, 2003], $\mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ [136.0 (4) and 140.0 (4) ${ }^{\circ}$; Löfgren, 1974] and dipyrazinium trichromate [137.3 (1) and 137.5 (2) ${ }^{\circ}$; Pressprich et al., 1988].

Figure 2
The supramolecular $R_{4}^{4}(26)$ rings of (I), formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which are indicated by dashed lines.

In (I), supramolecular rings, which can be described in graph-set notation as $R_{4}^{4}(26)$ (Etter, 1990), are formed via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 10$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2(1-x,-y, 1-z)$ hydrogen bonds (Fig. 2). In addition, the rings are stabilized by a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, thus establishing a network structure.

The DABCO-diium ion is distorted, as indicated by the $\mathrm{N}-$ $\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles [mean 13.3 (3) \AA]. DABCO has been observed to be disordered across the $\mathrm{N} \cdots \mathrm{N}$ axis in several cases, including DABCO-biphenol (1:1; Ferguson et al., 1998), DABCO-perchloride acid (1:1; Katrusiak, 2000) and DABCO-maleic acid (1:2; Sun \& Jin, 2002). In (I), DABCO is ordered, owing to the confinement of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Experimental

$\mathrm{CrO}_{3}(0.3 \mathrm{~mol})$ and DABCO (0.1 mol) were dissolved separately in water (1.2 and 0.9 mol) and the two solutions were then mixed with cautious stirring. Crystals of the title salt were formed in the final solution by slow evaporation of water at 293 K over a period of one week.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{Cr}_{3} \mathrm{O}_{10}\right]$	$Z=2$
$M_{r}=430.19$	$D_{x}=2.073 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $p \overline{1}$	Mo $K \alpha$ radiation
$a=7.4895(6) \AA$	Cell parameters from 346
$b=9.7648(8) \AA$	reflections
$c=10.1427(8) \AA$	$\theta=2.4-23.0^{\circ}$
$\alpha=87.661(1)^{\circ}$	$\mu=2.37 \mathrm{~mm}^{-1}$
$\beta=69.497(1)^{\circ}$	$T=273(2) \mathrm{K}$
$\gamma=82.771(1)^{\circ}$	Block, colorless
$V=689.26(10) \AA^{3}$	$0.59 \times 0.58 \times 0.52 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	2459 independent reflections
\quad diffractometer	2336 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.013$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.1^{\circ}$
$(S A D A B S ;$ Bruker, 2000)	$h=-8 \rightarrow 8$
$T_{\text {min }}=0.023, T_{\text {max }}=0.026$	$k=-11 \rightarrow 11$
5021 measured reflections	$l=-12 \rightarrow 11$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0519 P)^{2}\right. \\
\quad \\
\quad+0.4865 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.52 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.186(6)
\end{array}
\end{aligned}
$$

2336 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.013$
$\mathrm{m}_{\text {max }}=25.1$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 11$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.085$
$S=1.07$
2433 reflections
199 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cr} 2-\mathrm{O} 5$	$1.581(2)$	$\mathrm{Cr} 3-\mathrm{O} 10$	$1.618(2)$
$\mathrm{Cr} 2-\mathrm{O} 6$	$1.594(2)$	$\mathrm{Cr} 3-\mathrm{O} 7$	$1.817(2)$
$\mathrm{Cr} 2-\mathrm{O} 4$	$1.702(2)$	$\mathrm{Cr} 1-\mathrm{O} 1$	$1.587(2)$
$\mathrm{Cr} 2-\mathrm{O} 7$	$1.7195(19)$	$\mathrm{Cr} 1-\mathrm{O} 3$	$1.601(3)$
$\mathrm{Cr} 3-\mathrm{O} 8$	$1.5947(19)$	$\mathrm{Cr} 1-\mathrm{O} 2$	$1.614(2)$
$\mathrm{Cr} 3-\mathrm{O} 9$	$1.602(2)$	$\mathrm{Cr} 1-\mathrm{O} 4$	$1.837(2)$
$\mathrm{O} 5-\mathrm{Cr} 2-\mathrm{O} 6$	$108.74(12)$	$\mathrm{O} 9-\mathrm{Cr} 3-\mathrm{O} 7$	$109.18(12)$
$\mathrm{O} 5-\mathrm{Cr} 2-\mathrm{O} 4$	$111.28(12)$	$\mathrm{O} 10-\mathrm{Cr} 3-\mathrm{O} 7$	$107.69(11)$
$\mathrm{O} 6-\mathrm{Cr} 2-\mathrm{O} 4$	$109.73(11)$	$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 3$	$110.76(16)$
$\mathrm{O} 5-\mathrm{Cr} 2-\mathrm{O} 7$	$108.80(11)$	$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 2$	$111.56(14)$
$\mathrm{O} 6-\mathrm{Cr} 2-\mathrm{O} 7$	$107.38(11)$	$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 2$	$110.19(13)$
$\mathrm{O} 4-\mathrm{Cr} 2-\mathrm{O} 7$	$110.80(11)$	$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 4$	$109.14(11)$
$\mathrm{O} 8-\mathrm{Cr} 3-\mathrm{O} 9$	$110.10(12)$	$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 4$	$106.17(13)$
$\mathrm{O} 8-\mathrm{Cr} 3-\mathrm{O} 10$	$110.28(11)$	$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 4$	$108.85(10)$
$\mathrm{O} 9-\mathrm{Cr} 3-\mathrm{O} 10$	$111.71(12)$	$\mathrm{Cr} 2-\mathrm{O} 7-\mathrm{Cr} 3$	$132.80(12)$
$\mathrm{O} 8-\mathrm{Cr} 3-\mathrm{O} 7$	$107.76(10)$	$\mathrm{Cr} 2-\mathrm{O} 4-\mathrm{Cr} 1$	$127.34(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$-13.7(3)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$-12.3(3)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$-13.9(4)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 10$	$0.86(4)$	$1.90(4)$	$2.738(4)$	$164(3)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.84(4)$	$2.13(3)$	$2.868(3)$	$147(3)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots 1^{\mathrm{ii}}$	$0.84(4)$	$2.31(4)$	$2.893(4)$	$127(3)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 5^{\mathrm{iii}}$	0.97	2.48	$3.339(4)$	147
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{O}^{\mathrm{iv}}$	0.97	2.33	$3.199(3)$	148
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.55	$3.348(3)$	140
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O} 8^{\mathrm{i}}$	0.97	2.39	$3.294(4)$	154
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {iv }}$	0.97	2.47	$3.419(3)$	168
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{v}}$	0.97	2.42	$3.135(4)$	131
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\text {iv }}$	0.97	2.37	$3.020(3)$	124

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $1+x, y, 1+z$; (iii) $1-x, 1-y, 1-z$; (iv) $x, y, 1+z ;(\mathrm{v})-x, 1-y, 1-z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1645). Services for accessing these data are described at the back of the journal.

References

Blum, D. (1979a). J. Appl. Cryst. 12, 607.
Blum, D. (1979b). J. Appl. Cryst. 12, 608.
Blum, D., Averbuch-Pouchot, M. T. \& Guitel, J. C. (1979). Acta Cryst. B35, 454-456.
Blum, D. \& Guitel, J. C. (1980). Acta Cryst. B36, 135-137.
Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Ferguson, G., Glidewell, C., Gregson, R. M., Meehan, P. R. \& Patterson, I. L. J. (1998). Acta Cryst. B54, 151-161.

Fossé, N., Joubert, O., Ganne, M. \& Brohan, L. (2001). Solid State Sci. 3, 121132.

Katrusiak, A. (2000). J. Mol. Struct. 552, 159-164.
Kolitsch, U. (2003). Acta Cryst. E59, i164-i166.
Löfgren, P. (1974). Chem. Scr. 5, 91-96.
Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. \& Gard, G. L. (1988). Inorg. Chem. 27, 260-264.
Stěpień A. \& Grabowski, M. J. (1977). Acta Cryst. B33, 2924-2927.
Sun, C. R. \& Jin, Z. M. (2002). Acta Cryst. C58, o600-o601.

